
NovelGridworlds: A Benchmark Environment for Detecting
and Adapting to Novelties in Open Worlds
Shivam Goel∗
Tufts University
Medford, USA

Shivam.Goel@tufts.edu

Gyan Tatiya∗
Tufts University
Medford, USA

Gyan.Tatiya@tufts.edu

Matthias Scheutz
Tufts University
Medford, USA

Matthias.Scheutz@tufts.edu

Jivko Sinapov
Tufts University
Medford, USA

Jivko.Sinapov@tufts.edu

ABSTRACT
As researchers are developing methods for detecting and accommo-
dating novelties that will make AI agents more robust to unknown
sudden changes in the “open worlds”, there is an increasing need
for benchmark environments that allow for the systematic evalua-
tions of the proposed AI techniques. We present “NovelGridworlds”,
an OpenAI Gym environment framework for developing and eval-
uating AI agents that can detect and adapt to unknown sudden
novelties in their environments. Based on a rich taxonomy of nov-
elties illustrated in 4 different tasks with 12 novelties in each, we
propose evaluation metrics for evaluating both planning systems
and learning systems that can handle novelty and illustrate the
metrics with results from simulations of both types of AI agents.
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1 INTRODUCTION
Artificial agents operating in real-world applications need the abil-
ity to be robust to unknown sudden changes in their operating
environment. Yet, most research in AI has been based on “closed-
world assumptions”, i.e., that all task-relevant information, at least
the involved types of objects and the types of attributes they have, is
known ahead of task performance. In contrast, “open worlds” may
contain novelties that are unknown during algorithm design and
can, therefore, not be accounted for ahead of time. There are increas-
ing efforts for developing AI agents to adapt to novelties in open
worlds, using techniques such as reinforcement learning (RL) [7, 12],
planning-based approaches [8, 9], and hybrid approaches [14, 16].

When developing algorithms for open worlds, researchers need
to use domains to train and evaluate their agents, and the domains
are likely tailored to the agent’s algorithms and thus do not allow for
a fair comparison across different approaches. What is needed is an
evaluation environments capable of benchmarking different types
of AI agents without introducing a bias towards one or another
method. Moreover, evaluation environments with cross-platform
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support for different programming languages and support for var-
ious sub-domains of AI are not readily available. To address this
problem, we present a “gym environment” called NovelGridworlds1

The rest of the paper is organized as follows. We start by pro-
viding background on the existing environments used for bench-
marking such agents in Section 2.1, followed by providing basics
of the planning agents and the reinforcement learning agents in
Section 2.2. We then describe the base tasks in the NovelGridworlds
domain in Section 3, followed by a detailed taxonomy of novelty
with examples of the same implemented in NovelGridworlds. In
Section 4, we present the agents used with our domain, followed
by the proposed evaluation metrics, and the results in Section 4.3.
We finish with a discussion of our accomplishments and possible
future improvements in Section 5 and Section 6, respectively.

Our contributions are thus (1) a benchmarking environment for
evaluating and prototyping multiple AI agents that can detect and
handle novelties; (2) a rich taxonomy of novelties and illustration
of 4 tasks with 12 novelties in each of the tasks; and (3) evaluation
metrics to evaluate both planning agents as well as reinforcement
learning agents with baseline results using both the agents on some
tasks and novelties.

2 BACKGROUND
2.1 Related Work
In the recent past, there is a growing interest in the AI community
to develop agents that can adapt to changes in open-world envi-
ronments. Khetarpal et al. [7], presents a review of methods used
to adapt to non-stationarity in environments using reinforcement
learning methods. Muhammad et al. [9] propose a cognitive archi-
tecture using open world symbolic planning to solve novelties in an
open-world environment. Jamshidi et al. [5] present an architecture
that utilizes machine learning techniques to find Pareto-optimal
configurations and limit the vast search space to such configura-
tions to make planning feasible. Klenk et al. [8] propose HYDRA,
which uses a domain-independent planner to play the game, and
learns a model to update it when novelties get introduced in the
game. Sarathy et al. [16] propose SPOTTER, which uses reinforce-
ment learning techniques to find the operators to solve the tasks
when symbolic planning fails to solve them. There has been an

1The open-source NovelGridworlds repository is available at https://github.com/
gtatiya/gym-novel-gridworlds.

https://github.com/gtatiya/gym-novel-gridworlds
https://github.com/gtatiya/gym-novel-gridworlds


enormous reliance on the choice of domains to experiment upon in
all of these works. Hence, it becomes necessary to develop domains
best suited for the problems at hand.

The development of environments and benchmarks has helped
progress the research in various fields of AI [3, 11, 13, 21, 23]. Alex
et al. [23] present GLUE, a benchmarking environment platform
to bridge learning with natural language understanding. Jiang et
al. [6] present WordCraft, an environment to develop common-
sense agents. This environment also incorporates natural language
corpora to improve common sense among agents. Nichol et al. [11],
present a benchmarking environment to evaluate the effective-
ness of transfer learning and few-shot learning techniques in the
context of Reinforcement Learning. To bridge the gap for the devel-
opment of algorithms with a combination of planning and learning,
PDDLGym [21] offers an environment to combine PDDL (Planning
Domain Definition Language) with OpenAI Gym [1] environments.

However, environments with cross-platform support for various
programming languages and support for various sub-domains of
AI are not that easy to find. Moreover, NovelGridworlds provide
tools to inject several novelties in all the base tasks. To best of
our knowledge there is no such environment that provides novelty
injection tool.

2.2 Notations & Preliminaries
In sequential decision making problems, the agent has to perform
decision making at each time step to reach a set of goal states𝑔 from
a start state 𝑠𝑜 . However, in solving the problems in open-worlds,
there can be unexpected changes in the environments, which can
deter the agent from reaching the goal state. As elucidated in [9],
we borrow the definition of novelty as something that the agent
has not experienced before, nor it can derive it using some known
experience. We define these unexpected changes as novelties. Ide-
ally, the agents should have the capabilities to still reach the goal
state even if novelties arise in the environments. In this paper, we
extend this definition by providing a taxonomy of the classes of
novelties and present examples of each of them implemented in
our NovelGridworlds domain.

2.2.1 Planning. To define a planning problem, we define L, as
a first-order language that contains atoms 𝑝 (𝑡1, . . . , 𝑡𝑛) and their
negations ¬𝑝 (𝑡1, . . . , 𝑡𝑛) , where 𝑡𝑖 can be either variables or con-
stants. We define a planning domain in the language L as Σ =

(S,A, 𝜏), in which S represents the set of states, A represents the
set of finite actions, and 𝜏 is the transition function between the
states and actions [17]. A typical planning problem is defined as
P = (Σ, 𝑆0,𝐺), in which 𝑆0, is the set of starting states and 𝐺 is
the set of goal states. The agent begins in one of start states 𝑆0,
and finds a plan 𝜋 to reach one of the goal state in 𝐺 . Thus the
plan 𝜋 =

[
𝑎1, 𝑎2, . . . 𝑎 |𝜋 |

]
is the solution to the planning problem P

where 𝑎𝑖 ∈ A is the action. Each action has a set of preconditions
and effects. The set of preconditions needs to be true for the action
to be executed successfully in the environment. Table 1 shows ex-
amples of how actions are defined in planning domain. Note that
these actions are only for demonstration and can be defined using
a different set of pre-conditions and effects.

Table 1: Examples of the break and move-forward action as
represented in the planning domain.

2.2.2 Reinforcement learning. A RL problem is generally formal-
ized using a Markov Decision Process (MDP) that is represented
by a tuple ⟨𝑆,𝐴, 𝜏, 𝑅,𝛾⟩. At every time step 𝑡, the RL agent receives
a state representation 𝑆𝑡 ∈ S and explores an unknown environ-
ment by taking an action 𝐴𝑡 ∈ A(𝑠). A reward 𝑅𝑡+1 ∈ R ⊂ R
is provided based on the action taken by the agent to reach the
next state 𝑆𝑡+1. The agent learns to maximize the expected return
value 𝐺𝑡 =

∑∞
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘+1 for every state at time 𝑡 . The discount
factor𝛾 ∈ [0, 1) determines the importance of immediate and future
rewards [22].

3 ENVIRONMENT
NovelGridworlds is an OpenAI Gym environment which is im-
plemented in python and currently has four different tasks. Each
environment is a discrete grid world domain. The size of the default
grid world is set to 10, which the user can vary. Each block contains
an entity or object. The contents of the blocks can vary according
to the tasks. However, in each environment, there are a few com-
mon block items. The entire arena is enclosed by a wall, which is
unbreakable. Each environment has a block occupied by a crafting-
table, a block occupied by the agent, and free space occupied by
air. The agent can move in the blocks containing air. At each time
step, the agent maintains an inventory of the collected items. A
diagrammatic representation of the grid world is shown in figure 2.
The diagrammatic representation is not specific to a particular task.
It only shows the agent, wall, crafting-table and air. It also demon-
strates how a novel entity appears in the environment. The agent is
given a discrete set of actions, out of which 4 actions are common



Figure 1: The figure shows a screenshot of one of the states
of the NovelGridworld-Bow-v0 of size 10 × 10. The agent is
represented as a triangle, and it is facing the crafting table
(shown in green). Two of the three sticks (yellow) and strings
(orange) are in gridworld and one of each is in the agent’s in-
ventory. The spaces in blue are the air blocks, and the agent
can freely traverse in those spaces. The entire arena is sur-
rounded by walls represented in purple. The image’s left
side shows the steps, agent’s current direction, last action
taken, reward, step cost, and selected item. On the right side
of the image, the agent’s inventory is displayed.

to all the environments, namely move-forward, turn-left, turn-right
and break. Some of the grid world blocks are occupied by breakable
objects. The agent when one block next to these objects uses break
action, the item falls into agent’s inventory. For example, if the
agent uses break action in front of the tree-log, the tree-log falls into
the agent’s inventory. The environment also returns an action cost
for each action taken by the agent. This is designed by keeping in
mind a planning agent to optimize the plan based on the action
cost. In each task, the agent needs to craft objects using multiple
recipes, which requires performing certain steps in some sequence.
We describe each task in detail in the sub-sections below.

3.1 Task Descriptions
3.1.1 NovelGridworld-Bow-v0. In this task, the agent has to
achieve the goal of successfully crafting a bow. Apart from the
crafting-table, wall, air, and agent, three blocks in the grid world are
occupied by string and three blocks are occupied by stick. In addition
to the default actions common to all the domains (described earlier),
this task has an additional action called craft-bow. The recipe for
creating a bow requires three stick and three string. After collecting
all the required ingredients from the environment, the agent needs
to navigate to the crafting-table to craft a bow. Upon successful
execution, the bow appears in the agent’s inventory, and the task is
complete. A screenshot of this environment can be seen in figure 1.

3.1.2 NovelGridworld-Bow-v1. As opposed to the previous task
(3.1.1), in this task, the agent has to collect raw ingredients from
the environment and craft the intermediaries to craft the bow. This
2To reduce clutter, we only show the default items in the environment. Hence, the
diagrammatic representation only shows the agent, crafting-table, wall, and air.

(a) Default (No novelty)

(b) Axe (c) Fence (d) Fire-wall

Figure 2: The Figures show a diagrammatic representation 2

of the NovelGridworlds domain and representation of some
of the novelties. From subfigure (a), it can be seen that a wall
surrounds the entire arena of the grid world, and the agent
is facing a crafting-table. The green space represents the air,
and the agent can move through that space to navigate in-
side the arena. In subfigure (b), a new object (axe) appears in
the environment. In subfigure (c), a new object (fence) sur-
rounds the crafting table to obstruct it from the agent. In
subfigure (d), the walls are replaced by fire-walls.

task is an advanced version of the previous task. In addition to the
default grid world items, the blocks in this grid world are occupied
by tree-log and wool. The default action space is augmented by
extract-string, craft-plank, craft-stick and craft-bow. The agent can
use the action craft-plank to convert 1 tree-log into 4 plank, and
use craft-stick to make 4 stick from 2 planks. The agent can use
extract-string in front of wool to extract 4 string from the wool. The
task’s final goal is to craft a bow, and the agent needs to be in front
of the crafting-table with 3 stick and 3 string to complete the task.

3.1.3 NovelGridworld-Pogostick-v0. In this task, the agent has
to craft a pogostick. The grid world in this task has tree-log, tree-tap,
stick, plank, in addition to the default items. The default action
space is augmented by extract-rubber and craft-pogostick. One of
the tree-log has the tree-tap placed in front of it. The agent needs
to extract rubber from that unique tree-log. The agent needs 4 stick,
2 plank, and 1 rubber to craft a pogostick. The agent needs to be
facing the crafting-table to craft the pogostick. The task is complete
when a pogostick gets added to the agent’s inventory.

3.1.4 NovelGridworld-Pogostick-v1. It is an advanced version
of the task in 3.1.3. In addition to the default items, the grid world
in this task has some blocks occupied with tree-log. The agent’s
default action space is expanded by place-tree-tap, extract-rubber,



craft-plank, craft-stick, craft-tree-tap, and, craft-pogostick. In order
to complete the task of successfully crafting the pogostick, the agent
needs to craft intermediaries. The agent needs 1 tree-log to craft
4 plank, 2 plank to craft 4 stick, and 5 plank and 1 stick to craft a
tree-tap. The tree-tap can be placed in any of the tree-log to extract
rubber. The recipe to craft the pogostick requires 4 stick, 2 plank,
and 1 rubber. To craft the tree-tap and pogostick, the agent needs to
be facing the crafting-table with the necessary ingredients. Once
the agent gets the pogostick in its inventory, the task is complete.
Table 2 summarizes the actions and blocks in each task.

3.2 Novelty Taxonomy
As described in Section 2.2, a planning agent and a RL agent both
have access to a finite set of states S, set of finite actions A, and
only exclusive to a planning agent, access to the transition function
𝜏 . Any change in these sets would be considered novel to the AI
agent. Therefore, to cover extensive novel scenarios, we classify the
novelties by changing any or all of these sets. As described below,
we divide the novelties into three broad classes.

3.2.1 Object Novelty. In this class of novelty, a novel object ap-
pears in the environment. This object is completely unknown to the
agent’s knowledge of the world. In other words, the observation
space 𝑥 ∈ S does not come from the distribution of the agent’s
current perception of the world, and hence in this class of nov-
elty, state S changes. To illustrate an example, let us consider the
NovelGridworld-Pogostick-v1 task as described in Section 3.1.4. In
the post-novelty scenario, a novel object called axe appears in the
environment. The agent’s current perception of the world has no
notion of axe and hence it is considered as a novelty. The agent
has to learn to interact with the axe to figure out its usage in goal
completion.

3.2.2 Attribute Novelty. In this class of novelty, the attributes of
the existing items in the environment changes. We define this class
of novelty using the definition of transition function 𝜏 : S × A →
S, as described in Section 2.2. In the post-novelty scenario, the
environment changes such that 𝜏 ′ : S×A → S′ in which S′ is the
new state transition from the state action pair. Hence, similar state
action pairs do not result in the same states as in the pre-novelty
scenario. To illustrate this novelty, let us take an example of the
NovelGridworld-Pogostick-v1 task as described in Section 3.1.4. In
the post-novelty scenario, if the tree-log provides 2 tree-log into the
agent’s inventory as opposed to 1, then we call it a attribute change
of the tree-log. Therefore, the agent encounters a new state S′ from
known state S taking known action A.

3.2.3 Action Novelty. In this class of novelty, the action spaceA of
the environment changes. In other words, the behavior of action as
known to the agent is not the same in the post-novelty scenario. To
illustrate this class of novelty let us consider the agent’s action space
to be a set of three actions, namely, move-forward which takes the
agent one step forward in the direction the agent is facing; turn-left,
which turns the agent 90° counter-clockwise; and turn-right, which
turns the agent 90° clockwise. In the post-novelty scenario, if the
agent moves one block backward on using the action move-forward
or if the agent turns 90° clockwise on using the action turn-left,
then the agent’s perception of the actions will change and hence,

Actions and Blocks in Tasks
Environment Actions Blocks

Default Move-forward,
turn-left, turn-right,
break, select-<block>.

air, wall,
crafting-table

NovelGridworld-
Bow-v0

craft-bow. string, stick

NovelGridworld-
Bow-v1

craft-bow,
extract-string,
craft-plank,
craft-stick.

tree-log, wool,
string, stick

NovelGridworld-
Pogostick-v0

extract-rubber,
craft-pogostick.

tree-log,
tree-tap, stick,

plank
NovelGridworld-
Pogostick-v1

extract-rubber,
craft-plank,
craft-stick,

craft-tree-tap,
craft-pogostick.

tree-log,
tree-tap, stick,

plank

Table 2: Table shows the actions and blocks specific to each
of the implemented environments. Note that "Default" de-
notes the actions and blocks common to all the environ-
ments.

Novelty Type
Novelty
Class

Beneficial Detrimental Irrelevant

Object axe fence spring, arrow
Attribute break increase,

extract-
increase

extract-
decrease,
fire-wall

-

Action chop, jump action remap -
Table 3: Classification of all novelties based on the class and
type.

we call this as action novelty. We provide specific cases of each
class of novelty later in the Section 3.3

We further divide each class of novelty into three sub types,
Beneficial, Detrimental, and Irrelevant.

3.2.4 Beneficial. This type of novelty is helpful for the agent to
complete the task at hand. Hence, the agent needs to learn to utilize
this novelty in task completion.

3.2.5 Detrimental. This type of novelty is further catastrophic in
task completion. In other words, the agent needs to learn to mitigate
this novelty to complete the task efficiently.

3.2.6 Irrelevant. This type of novelty is irrelevant to the task. In
other words, the novelty can be completely ignored by the agent.



Figure 3: Classification of the novelties implemented in the
NovelGridworlds. The novelties in this diagram are imple-
mented across all the domains presented in the paper.

3.3 Novel Domains
In the present version of NovelGridworlds, we implement 12 3

exclusive novel scenarios; a detailed list is shown in Table 3. Figure 3
shows the classification of each novelty based on the classes they
fall under.

3.3.1 Fence. This novelty falls under the category ofObject novelty.
A new object called fence, appears in the environment. The fence
encloses some or all of the existing items in the environment to
obstruct the agent’s access to those items. This novelty, as shown in
Table 3, is classified as a detrimental novelty. In the ideal scenario,
the agent should learn to break the fence to access the items in the
environment.

3.3.2 Arrow & Spring. This novelty falls under the category of
Object novelty. A new item called arrow or spring appears on some
grid spaces in the environment. An arrow appears in Bow-v0, and
Bow-v1, and spring appears in Pogostick-v0 and Pogostick-v1. Both
these novelties are classified as irrelevant novelties. Hence, they
have nothing to do with the task and the agent should learn to
ignore them.

3.3.3 Break increase. This is an Attribute novelty, in which the
attribute of the existing item in the environment changes. In the
pre-novelty scenario, if the agent breaks an object, the number of
quantity of that object in the agent’s inventory would be incre-
mented by 1. However, in break increase novelty, after breaking
an object, the agent would receive 2 quantities of that object in its
inventory instead of 1. This is a beneficial novelty as the agent can
collect more objects with lesser number of actions and finish the
task sooner as compared to pre-novelty scenario.

3.3.4 Extract increase/decrease. This is an Attribute novelty, in
which the attribute of the existing item in the environment changes.
In this novelty, there is a change in the number of objects the agent
3To prevent redundancy, we have clubbed some novelties (extract increase, decrease
and arrow, spring) into one description.

gets when it executes extract action. This novelty can be beneficial
as well as detrimental. If there is an increase in the number of
objects the agent gets, it would be a beneficial novelty, whereas in
case of decrease in the number of objects, it would be a detrimental
novelty.

3.3.5 Action remapping. This novelty falls under the class ofAction
novelty, and is further classified as detrimental. In this novelty, the
effects of the actions as known to the agent are not same anymore.
For example, turn-left does not turn left anymore but make the
agent move forward. We randomly shuffle the action effects with
each other to remap actions among the set of available action in
each task. This novelty is classified as a detrimental novelty, and
the agent should learn to handle such a scenario. In a real-world
scenario, this can be analogous to a system getting hacked, and the
autonomous agent needs to figure out a way to get out of such a
situation.

3.3.6 Jump. This novelty falls under the class of Action novelty,
and is further classified as beneficial. In this novelty, a new action
called jump is added to the action space of the agent. This action
makes the agent jump two blocks forward in the direction it is
facing. This novelty is a beneficial novelty because it helps the
agent to move faster in the environment.

3.3.7 Axe. This novelty falls under two classes, Object, and At-
tribute. In this novel scenario, a new object called axe appears in
the environment, and if the agent uses it, the number of quanti-
ties received from breaking something in the environment doubles.
Hence, this novelty introduces a new object and also changes the
attributes of the environment. This novelty is further classified as
beneficial, and ideally, the agent should learn to exploit this novelty
to its advantage.

3.3.8 Fire wall. This novelty falls under two classes, Object, and
Attribute. In this novel scenario, the material of the wall enclosing
the arena changes to fire-wall, and if the agent goes near it, it dies,
and the episode terminates. This novel scenario is further classified
as a detrimental novelty since the agent needs to be extra careful
in going near the fire-wall.

3.3.9 Chop. This novelty falls under two classes, Action and At-
tribute. In this novelty, a new action called chop is added to the
agent’s action space. Upon using this action in front of the breakable
objects in the environment, the agent gets double the number of
items previously received. This novelty falls under the classification
of beneficial novelty. Ideally, the agent should discover this novel
action and learn to double the number of items.

3.3.10 Axe to break. This novelty falls under all three categories,
Object, Action, and Attribute. In this novelty, a new object call axe
appears in the environment, and the break action only works if the
agent is holding an axe. This novelty is detrimental to the agent’s
perspective since it cannot complete the task unless it discovers
this novelty. This novelty is not included in the table 3, because it
is falls under two categories of detrimental and beneficial and also
under three classes.



4 EXPERIMENTAL RESULTS
4.1 Agent Descriptions
To demonstrate our environments, we ran experiments using two
different types of agents on some of the base tasks and novel tasks.

4.1.1 Planning . The planning agent was implemented using an
extension of cognitive Distributed Integrated Affect Re-flection
Cognition (DIARC) architecture [18, 19]. The planning agent parses
the JSON received from the environment and generates a problem
and a domain PDDL file. MetricFF [4] planner is used to find a plan
to solve the task. The plan is executed using an action executor
implemented in the architecture. At each time step the agent up-
dates its memory based on the information it receives from the
environment. We used the same architecture as described in [9].
The system maintains a living, episodic and a universal memory to
infer novelties in the environment. The architecture uses heuristic
algorithms as proposed in [17] to adapt to the novel situations.

4.1.2 Reinforcement Learning (RL) Agent. We created a reinforce-
ment learning agent 4 with LIDAR sensors. The sensors send 8
beams at 45 degree increments to each reachable object in the
environment. Each beam returns a euclidean distance from the
agent’s current location to the object. The agent also has a vec-
tor representing the current inventory. For the sake of simplicity,
the crafting-table was made an unbreakable object. The reward
function was also shaped to make learning easier. A reward of +10
was given if the agent collected one of the ingredients for the task
completion. A reward of +50 was given for achieving the goal, and
−1 for each time step otherwise. For training the RL agent, we used
the Proximal Policy Optimization (PPO2) [20] implementation in
the open-source Stable Baselines package [15], with default hyper-
parameters. We chose an off the shelf implemented RL algorithm
to demonstrate how users can easily plug in existing algorithms
with our environment.

4.2 Evaluation Metrics
In this section, we describe our proposed evaluation metrics for
measuring performance of novelty-centric agents in both planning
systems and learning systems.

4.2.1 Base task performance metrics. These metrics evaluate the
performance of the agents on the base task (pre-novelty scenario). In
both the planning and reinforcement learning agents, we measure
the number of time steps the agent takes to complete the base task.
Specifically for the RL agent, we also measure the percentage of
times the agent achieves the final goal. In the case of the planning
agent, the agent always succeeds in reaching the goal in the pre-
novelty environment.

4.2.2 Novelty metrics. These metrics evaluate the performance of
the agent after the novelty is introduced. The metrics are reliant
on two criterion, namely detection and adaption. Hence we define
threemetrics to evaluate the performance of the agent in the novelty
scenario.

4The code that trains the environment using the RL agent using stable-baselines is avail-
able at https://github.com/goelshivam1210/adaptive_agent. It also has the necessary
PDDL files and other data to reproduce results presented in the paper.

• Metric M1 (Reaction Performance): This metric is defined
as the ratio of the cumulative action cost that the agent
accumulates in the post-novelty scenario to the action cost
accumulated in the pre-novelty scenario. In other words, if
the ratio is less than 1, the performance is improved; if the
ratio is greater than 1, the performance is reduced and if the
ratio is 1, the performance is same.

• Metric M2 (Steps): This metric records the number of steps
taken by the agent to solve the task in the post-novelty
scenario.

• Metric M3 (Detection Rate): This metric records the binary
value of whether the agent reports the novelty or not. This
metric is only specific to the planning architecture.

To demonstrate the RL agent’s performance, we plot the learning
curves. We divide the learning curve into two sections; section
1 presents the agent’s learning performance in the pre-novelty
scenario and section 2 represents the agent’s performance in the
post-novelty scenario. We present the test results of the agent over
a course of 10 trials. In each trial, we save 20 models uniformly
distributed across the training regime. We perform a test on each
model, by running it on the corresponding environment for 25
episodes, each with a maximum of 200 steps. We compute the
cumulative reward in every episode and report the cumulative
mean reward of all the 25 episodes. This score averaged across
10 trials is plotted against the number of time steps the agent is
trained. To do fair comparison to actually know whether the RL
agent learned to solve the task, we also report the success rate of
achieving the goal task. To compute the success rate, we run 25
tests on the final models of each training regime and report the
percentage of times the agent successfully reaches the goal state.

4.3 Results
4.3.1 Planning Agent. We evaluated the planning agent on all the
4 tasks, and 3 novelty scenarios in each task.

(1) Fence
(2) Arrow/Spring
(3) Axe

Table 4 shows the performance of the planning agent. We ran
the agent for 10 episodes. In each episode the agent was given the
environment dynamics, and a goal to solve. Keeping the goal same
across the episodes, we introduce the desired novelty in the 6th
episode. After the 6th episode, all the subsequent episodes were
loaded with the same novel environment. At each time step in
an episode, the agent gets a step cost for the action taken from
the environment. The cumulative step cost is used to compute the
metric M1. The agent was able to achieve the goal in all the episodes.
The table shows the mean and standard deviation of five non-novel
episodes and five novel episodes. The planning agent we evaluate
achieved a 100% detection rate in all the novelty scenarios. Hence,
the metric M3 for the planning agent was a perfect score.

It is important to note that the metric M1 for fence novelty in all
the environments is greater than 1, which clearly shows that the
agent needs to spend a higher cost to break the fences to achieve the
goal. Since the fence is a detrimental novelty, the agent accumulates
more cost while handling the novelty. The metric M2, in this case

https://github.com/goelshivam1210/adaptive_agent


NovelGridworld-Bow-v0
Metrics Default Fence Arrow/Spring Axe
M1 1.00 ± 0.00 1.80 ± 0.15 1.11 ± 0.135 1.02± 0.04
M2 87.6 ± 16.8 123.0±18.0 90.6 ± 15.1 98.0± 15.9

NovelGridworld-Bow-v1
M1 1.00 ± 0.00 1.82 ± 0.24 1.00 ± 0.02 0.99± 0.02
M2 36.8 ± 6.5 54.2 ± 4.8 37 ± 5.4 35.4 ± 4.0

NovelGridworld-Pogostick-v0
M1 1.00 ± 0.00 1.16 ± 0.08 0.97 ± 0.03 0.99± 0.04
M2 127.8 ± 9.0 122.0±19.8 105.6 ± 15.7 114.8± 4.0

NovelGridworld-Pogostick-v1
M1 1.00 ± 0.00 1.34 ± 0.06 1.07 ± 0.05 0.99± 0.02
M2 94.2 ± 12.9 105.2±14.5 100.8 ± 22.58 85.0± 15.4

Table 4: Table shows the results of the performance of the
planning agent on all the four tasks. In each task, it shows
pre-novelty (Default) scenario and 3 post-novelty (Fence, Ar-
row/Spring, Axe) scenarios.

also shows that the agent needs more steps than the default case to
finish the task.

It can be seen from Table 4, that the agent seeks to improve
its performance in the axe novelty. However, the improvement is
negligible. A possible reason for negligible improvement can be
that the agent takes more steps to complete the tasks in novel cases
(since it needs to navigate to the axe and hold it). Hence, it incurs
more step cost than it improves by using the axe. Moreover, we
noticed that in some of the episodes the agent did not even use the
axe to benefit from using it. In the case of the irrelevant novelty
(arrow/spring), the agent’s performance is nearly the same as the
default case, as expected.

4.3.2 Reinforcement learning agent. The RL agent was evaluated
on the NovelGridworld-Bow-v0 task. We evaluate the performance
on 3 novelty scenarios in this task. The agent was evaluated on these
novelties for demonstration purposes and users are encouraged to
develop methods to handle more complex novelties as implemented
in the environment.

(1) Action remapping
(2) Fire wall
(3) Break increase
Figure 4 shows the performance of the RL agent on the base task

(shown in red) and in the three novelty scenarios, namely break-
increase (shown in orange), fire-wall (shown in green), and action
remapping (shown in blue). The figure was plotted as described
earlier in Section 4.2 . It can be seen from Figure 4, that the RL agent
performs well in solving the task after being trained for around 1.8
million time steps. Row 1 of Table 5, shows the success rate (per-
centage of times the agent reaches the goal state) of the default task
after 1.8 million time steps of training. Its encouraging to see that
the agent improves its performance in the post novelty scenario
in the case of breakincrease novelty (orange line in Figure 4). This
was expected since it is a beneficial novelty. However, if we notice
in Table 5, the success rate of the agent drops considerably. One of
the possible reasons for increase in the total rewards but decrease

Figure 4: Figure shows the learning performance of the RL
agent on the task of NovelGridworld-Bow-v0. The pink line
in the center (2 Million) separates the performance of the
agent in the pre-novelty scenario to the agent’s performance
in cases of novelty.

in the performance can be that the agent tries to collect resources
and hoard reward without completing the final task. We also notice
a sharp decline in agent’s performance when the fire-wall nov-
elty is introduced. Fire-wall novelty is a detrimental novelty and
the task becomes quite hard to solve, hence we see that the agent
never recovers in this novel scenario. Table 5, also reflects the poor
performance of the agent in the fire-wall novelty.

Action remapping novelty however, showed almost similar per-
formance when compared to the pre-novelty performance. Provided
that its a detrimental novelty, the behavior is surprising. A possible
reason for this behavior can be that the action space is too small (5
discrete actions), and the actions are randomly shuffled. Therefore,
in some trials the agent might have got lucky and only 2 actions
might have inter-changed. We discovered this, when we inspected
the agent’s performance on each trial, and found out that it dipped
considerably (to almost -150 in the reward curve), when all the
actions were remapped. However, it did bounce back to original
performances in around 200, 000 environment interactions. Table 5,
however, shows the decline of 12% in the performance of the agent.

The RL agent was not tailored explicitly to handle novelties.
Hence, we could not evaluate it on all novelties. However, RL agents
do not have access to the transition dynamics and learn from interac-
tions, hence some level of non-staionarity such as, action remapping
and break increase was handled by the RL agent. The addition of a
new item in the agent’s state space is particularly hard, especially
when the state space representation of the RL agent is symbolic.
Hence, we did not evaluate the agent on object novelties, and leave
it as an open challenge for the RL community

5 DISCUSSION
The architecture of NovelGridworlds is designed for cross-platform
applicability and cross-agent compatibility. As shown in Section 4,



NovelGridworld-Bow-v0
Novelty Success (%)
Default 92.0 ± 20.8

Action remapping 80.00 ± 40.00
Fire wall 0.00 ± 0.00

Break increase 29.2 ± 19.6
Table 5: Table shows the results of the performance of
the reinforcement learning agent on the base task of
NovelGridworld-Bow-v0 and three novelty scenarios. The
values denote the mean and standard deviations of the suc-
cess rate of solving the final task. The values were calculated
at 1.8 M timestep for the default case and 4 M time step for
all the novelty scenarios.

NovelGridworlds is capable of prototyping algorithms both in the
planning domains and machine learning domains. It is a fast and
lightweight simulation with a socket connection 5 for communica-
tion between the agent and the environment. Support for socket
connection provides an efficient way to connect the environment
with various agents, implemented using different programming lan-
guages. We demonstrate this ability by evaluating the environment
using agents developed in Java as well as Python.

Another striking feature of the NovelGridworlds is the verbose
information about the state of the world. This information can be
exploited by Natural Language Processing (NLP) algorithms to per-
form novelty reasoning. Hence, combining NLP algorithms with
the RL and Planning frameworks could be an important research
direction that can be pursued using our environment. Our frame-
work is also flexible in adding multiple novelties to the same task,
thereby making the task harder and generating a curriculum. This
functionality provides the capability of training a curriculum for
reinforcement learning agents [10].

Reinforcement learning algorithms deal with sample inefficiency,
and many researchers work in the direction of pre-training using
human demonstrations [2]. To that extent, we provide keyboard in-
terface support in our environment and provide support for record-
ing trajectories, which can be further used to perform learning
from demonstrations. We also provide code examples of wrappers
for limiting action space, implementing various observation spaces
essential in RL algorithms training.

6 CONCLUSION & FUTUREWORK
We presented NovelGridworlds, a robust open-source benchmark-
ing environment for developing and evaluating agents capable of
handling novelties in open worlds, together with a rich taxonomy
of how novelties in this domain are characterized. Results from
running and evaluating both planning and learning agents in dif-
ferent tasks show the utility of NovelGridworlds for comparing and
quantifying different approaches to open-world AI.

Moving forward, we plan to includemulti-agent support that will
allow for training and benchmarking multi-agent RL and planning

5We have detailed out all the special features and how to use them in the readme of
our environment which can be found at this link: https://github.com/gtatiya/gym-
novel-gridworlds/blob/master/README.md

algorithms. And while the current version only allows for static
novelties (i.e., novelties that remain the same throughout a task run),
future versions of the system will also include dynamic novelties
that can change at any time during task performance. This will
enable even more challenging evaluation settings that can test an
agent’s ability to quickly react to novelties.
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