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ABSTRACT

To continue the growing success of scientific discovery through deep space exploration, missions need to be
able to be able to travel further and operate more efficiently than ever before. To ensure resilience in this
capability, on-board autonomous fault mitigation methods must be developed and matured. To this end,
we present a system for cross-subsystem fault diagnosis of satellites using spacecraft telemetry. Our system
leverages a combination of Kalman Filters, Autoencoders, and Causality algorithms. We test our system for
accuracy against three data sets of varying complexity levels, along with baseline testing. Additionally, we
perform an ablation study to evaluate on-board tractability.

INTRODUCTION

Next-generation autonomous methods for fault re-
covery need to be considered and developed to en-
able resilience in spaceflight missions. Despite the
success of conventional on board fault handling pro-
cedures, there exist limitations to these approaches.
To date, the most widely used fault handling ap-
proach onboard satellites employs basic limit check-
ing on telemetry value for fault detection.1 Once
a fault is detected, its recovery is determined using
a set of onboard rules, preemptively engineered by
subject matter experts to trace back fault symptoms

to causes. In the case of anomalous, or “never before
seen” faults, these approaches fail to provide a real
time diagnosis on board, causing the spacecraft to
remain in standby (called “safe mode”) until ground
controllers are able to upload the correct safe mode
exiting command sequence. In the interim, vital sci-
ence data is lost, deteriorating the success of the mis-
sion. Moreover, faults which affect the health and
status of the spacecraft can be catastrophic if un-
addressed with a proper diagnosis, and in a timely
manner. To this end, intelligent on board fault di-
agnosis is crucial.
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To address these challenges, we present a system-
level approach to autonomous fault diagnosis on-
board a spacecraft. We use a combination of artifi-
cial intelligence and predictive constructs to render
diagnoses, including Kalman Filters, Autoencoders
(AE), and Associative Causality. We test our system
in three experiments on data sets of varying com-
plexity levels, for both accuracy of diagnosis, and
against alternative baseline approaches. Addition-
ally, we present ablation performance tests to eval-
uate on-board tractability of our system. Our main
contributions are as follows:

• We introduce a novel satellite fault diagnosis
algorithm

• We demonstrate the algorithm using three sets
of realistic spacecraft telemetry data

• We compare against baseline methods

• We demonstrate the tractability of the algo-
rithm on realistic hardware

RELATED WORK

Research in autonomous fault recovery has grown
significantly in recent years. While this problem
can be decomposed into three main challenge ar-
eas (detection, diagnosis, and prediction), we fo-
cus our review specifically on diagnosis considera-
tions.2 Specifically regarding power systems, Wang
et al. employ deep learning in generalized power
systems, as a way to diagnose faults.3 They use
stacked autoencoders (SAE) on preprocessed power
data for training, which is then used to initialize
a deep learning neural network (DLNN) to classify
the type of fault. Similar work has examined space-
specific power subsystems for diagnosis. Fang et
al. use both unsupervised (Denoising Autoencoder
in training) and supervised (Deep Neural Network)
learning to extract fault features from electrical power
system (EPS) telemetry, as a way to identify fault
states from the extraction of salient fault features in
the data.4 Carbone et al. develop a method for on-
line monitoring of EPS data, which examines short
circuits and sensor failures in telemetry using mod-
eling in a Kalman Filter-based approach.5 Daigle et
al. also leverage a model-based approach based on
residuals, which is an extension of the established
Qualitative Event-based Diagnosis (QED) method.6

Their work specifically examines a systems level ap-
proach to a subsystems (QED-PC - Possible Con-
flicts) approach, where they find pros and cons to
each.

In application to attitude control system (ACS)
of a spacecraft, Ahn et al. use a semi-supervised ap-
proach for anomalous fault detection, where a varia-
tional autoencoder (VAE) and Generative Adversar-
ial Network model provides a means for producing
reconstruction error values used to quantify norm
deviation.7 Gao et al. use Principle Component
Analysis (PCA) for complexity reduction via feature
extraction, which is fed into a binary Support Vec-
tor Machine (SVM) to classify faults. Lastly, fault
vectors are processed through a multi-class SVM to
determine the type of fault.8

While the reviewed methods provide a diverse
landscape of viable methods for fault mitigation in
satellite sub-systems, development in holisitic system-
level spacecraft fault diagnosis remains an open area
of research. Li et al. describe general data min-
ing approaches to system level fault diagnosis, em-
phasizing the value of augmentation of established
methods with autonomous methods. To this end,
we present a framework for system-level fault diag-
nosis of satellite telemetry. To our knowledge, this
proof-of-concept work is the first work which pro-
vides system-level, application agnostic methods for
fault diagnosis, which is able to process both nomi-
nal and unforeseen faults in spacecraft.

PRELIMINARIES

We begin with a discussion of the preliminary arti-
ficial intelligence methods utilized by our system.

Kalman Filters
Kalman filters are dynamic linear estimation mod-
els able to provide a prediction from previously mea-
sured data. They were developed by Rudolf E. Kálmán
in 1960, and are widely used in navigation related
works such as self-driving vehicles. In this work, we
leverage a Kalman filter to linearize data to a Gaus-
sian curve and predict an expected mean (which we
will call X) and covariance (which we will call Σ) on
satellite telemetry data. In this way, we can measure
the level of error of a mnemonic (e.g., a measurement
from a particular sensor), relative to itself (versus
the whole data set), such that the predictions are:

X
′
= AXk−1 +Wk−1

Σ′ = AΣk−1A
T +Qk−1

Where A is the state transition matrix, Wk is
the process noise, and Qk is the covariance process
noise. The state is measured as yk = HkXk + rk
where Hk is the measurement model matrix and rk
is measurement noise.
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As the updating process involves reshaping the
Gaussian curve, this update step allows for the use
of noisy sensor data. The updating process can be
described as:

vk = yk −Hk

S = HkΣ
′
kH

T
k +R

K = Σ′
kH

T
k S

−1

Xk = X
′
k +Kvk

Σk = Σ′
k −KSKT

In previous studies, it has been shown Kalman
filters are capable of error detection when taking the
residual error of predicted vs. actual values (Car-
bone et al. 2019). The residual error will be used to
determine if the value is an error, but a z-score will
be used to determine the significance of the erring
attribute where:

Z =
x− µ

σ

Autoencoders
Autoencoder(AE) Neural Networks are unsupervised
representation learners. By enforcing a reconstruc-
tion loss between input and autoencoder output, the
network learns an internal representation for our in-
put data distribution over many samples. Maintain-
ing an information bottleneck in our hidden layers
leads to a rich representation where our network
maps high-dimensional input data to a lower dimen-
sional representation space. In practice, our network
is split into encoder f : Rn → Rm and decoder net-
works g : Rm → Rn where n > m. Let x ∈ Rn

be our data sample. We create a representation of
our data y = f(x). Let our reconstructed sample
x′ = g(y) = g(f(x)). Our reconstruction loss θ will
be:

θ = E((x− x′)2),

which corresponds with the mean square error be-
tween our input and our reconstructed output.

Causality
Causal graphs provide a way to represent uncertain
causalities based on Belief Networks.9 Causal graphs
include a few advantages. First, they are able to use
either continuous or discrete input. For this work,
we used continuous values as input to represent the
sensor readings. They are also based on probabil-
ity theory and have a strong theoretical foundation.
The causal structure enables the ability to dynam-
ically change the causal relationships in real-time.
Finally, they have both directional and structural
relationships. In causal graph G = (E, V ) each node

v ∈ V represents an event, or in case a sensor read-
ing. Each edge e ∈ E represents the direction and
strength of the causal relationship. These relation-
ships make causal graphs a well-suited method for
diagnosing spacecraft telemetry faults.

We utilize the partial correlation algorithm de-
scribed in Runge et al.10 to compute the causal
graph. Formally, consider the time series Xt = {X1

t ,
X2

t , ..., X
N
t } with N datapoints of temporal length t

with:

Xj
t = fj(P (Xj

t ), n
j
t )

where fj is a nonlinear functional dependency and

nj
t represents mutually independent statistical noise.

The nodes in the temporal causal graph represent
the variableXj

t at different time points and P (Xj
t ) ⊂

(Xt−1, Xt−2, ...) is the causal parents ofX
j
t . A causal

link Xi
t−τ → Xj

t exists if Xi
t−τ ∈ P (Xj

t ).
The PCMCI algorithm consists of two stages -

(i) PC condition selection to identify P̂ (Xj
t ) where

Xj
t ∈ {X1

t , X
2
t , ..., X

N
t } and (ii) the momentary con-

ditional independence test (MCI) which tests the
condition Xi

t−τ → Xj
t

MCI : Xi
t−τ ⊥̸⊥ Xj

t |P̂ (Xj
t ) \ {Xi

t−τ}, P̂ (Xi
t−τ )

Hence, MCI conditions on both the parents Xj
t and

time-shifted parents Xi
t−τ .

For the PC algorithm, for every variable Xj
t we

initialize the preliminary parent P̂ (Xj
t ) = {Xt−1,

Xt−2,...,Xt−τmax
}. During the initial iteration, if H0 :

Xj
t ⊥̸⊥ Xi

t−τ cannot be rejected at pPC . The par-
ents are then sorted by their test statistic value and
then conduct conditional independence tests Xj

t ⊥⊥
Xi

t−τ |P where P are the strongest parents in P̂ (Xj
t )\

Xi
t−τ . After each iteration independent parents are

removed from P̂ (Xj
t ), and the algorithm terminates

if no more conditions can be tested. For testing in
the MCI portion, X1

t−2 → the conditions P̂ (X3
t ) are

sufficient to establish conditional independence.

THEORETICAL FRAMEWORK

We begin with a set of time-series data frames F =
f1, . . . f|F|, representing all data frames in a flight
mission from a starting time step 1, to ending time
step |F| (see Table 1 for illustrative example). The
finite set of input frames Fa,b = fa, . . . fb represents
data frames of telemetry from time step a to b of
the mission associated with F . Each frame fi ∈ F
occurring at time step i is composed of a finite set of
continuous telemetry mnemonicsM = m1, . . .m|M|.
Each telemetry mnemonic has a range of permissible
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values, and a range of faulting values. That is, for
any mnemonic mj , we define mj and mj as the lower
and upper bounds of mj , respectively. We consider
value assignments for a given mnemonic which fall
within the permissible range [mj , mj ] to be nominal
assignments, and values outside of that range to be
fault assignment. A spacecraft is in a GREEN status
if all of its telemetry readings are nominal, and is in
a RED status if one or more telemetry readings have
a faulting value.

Problem Formulation
Suppose a spacecraft is in flight, with a GREEN mis-
sion status. Now, suppose that sometime during the
spacecrafts flight, it encounters a scenario in which
one or more of its telemetry mnemonics enters a
faulting state, eliciting RED mission status. We as-
sume that given a set of faulting mnemonics causing
a RED mission status, there is a corresponding set of
mnemonics which are responsible for the root cause
of the symptomatic faulting mnemonics. We assume
that these root cause mnemonics can be found using
a diagnosis process which operates over the fault-
ing mnemonics and a set of data frames. In this
research, we simplify the diagnosis process to only
consider a single root cause mnemonic instead of a
full set of coordinated causes.

That is, given set of faulting mnemonics S =
{mi, . . .mj} (symptomatic set), there exists a root
cause mnemonic r ∈ M (not necessarily r ∈ S)
which can be found through a diagnosis process D
such that D : (S,Fa,b) 7→ r. Note that, while the
mapping D is one to one, it is not guaranteed that
a set of symptoms maps to a unique cause, without
consideration of a set of past data frames Fa,b, rep-
resentative of near-past flight.

Illustrative Example: Table 1 shows a simple
flight sample of toy data, where there are three sets
of faulting frames. The first fault occurs at f3, where
the current (m3) drops to value outside of the lower
threshold value, quickly recovering back to its orig-
inal value in the next frame. This was caused by a
faulty sensor reading, and thus the cause and symp-
tom are one in the same (SYMPTOM = current,
CAUSE = current). We discuss the implications of
this fault in the next section. The next fault oc-
curs at f6 - f9, triggered from a threshold breach
in temperature. In this case, the increased accelera-
tion of the spacecraft causes the skin temperature of
the spacecraft to increase, which is expected behav-
ior. Thus, in this case, (SYMPTOM = temperature,
CAUSE = acceleration). The last fault is triggered
at f13 - f15, due first to a breach in threshold from

m1 m2 m3

mnemonic acceleration temperature current
[mj, mj] [99,114] [80, 121] [10,23]

time step m1 m2 m3 status

f1 100 m/s2 97 ◦F 21 mA GREEN

f2 100 m/s2 97 ◦F 21 mA GREEN

f3 100 m/s2 99 ◦F 5 mA RED

f4 109 m/s2 99 ◦F 21 mA GREEN

f5 110 m/s2 106 ◦F 22 mA GREEN

f6 110 m/s2 115◦F 22 mA RED

f7 110 m/s2 118 ◦F 21 mA RED

f8 110 m/s2 120 ◦F 21 mA RED

f9 105 m/s2 115 ◦F 21 mA RED

f10 101 m/s2 110 ◦F 22 mA GREEN

f11 100 m/s2 97 ◦F 21 mA GREEN

f12 100 m/s2 114 ◦F 21 mA GREEN

f13 100 m/s2 125 ◦F 21 mA RED

f14 100 m/s2 151 ◦F 4 mA RED

f15 100 m/s2 170 ◦F 2 mA RED

Table 1: Illustrative sample a flight mission.
The top table shows upper and lower

thresholds of each mnemonic mi (indicated
mi and mi, respectively). The bottom table

shows 15 time steps expressed as time
frames f1, . . . f15, with their corresponding
status values, indicating a threshold breach
of one or more mnemonics in the frame.

the temperature, followed by an additional breach
from current. In this case, the temperature increases
rapidly, unlike its gradual increase due to spacecraft
speed. Here, one of the batteries has unexpectedly
caught fire, triggering an increase in temperature,
and the eventual threshold breach in the current due
to a dead battery. Thus, (SYMPTOM = tempera-
ture, current, CAUSE = current). The notation for
these scenarios are shown below:

D : ({m3},F3,3) 7→ m3

D : ({m2},F6,9) 7→ m1

D : ({m2},F13,13) 7→ m3

D : ({m2,m13)},F14,15) 7→ m3

Types of Faults
Our system captures three major fault types, shown
illustratively in Figure 1. The first fault type is an
ISOLATED FAULT, which broadly encompasses faults
that are a result of bit flips from cosmic radiation
(referred to as single event upsets, or “SEUs”), or
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Figure 1: Types of faults rendered by
diagnosis algorithm. We adopt an “iceberg”
analogy, where “at the tip of the iceberg,”
above the water, symptoms are realized.

Below the surface, the candidate root causes
live within the body of the iceberg. Note
that each of these images provide one of

many possible illustrative examples of each
kind of fault.

broken sensors. These faults can be thought of as
“spoofs,” where nothing is actually operationally
wrong with the spacecrafts function. In our illus-
trative example, the fault occurring at F3,3 would
be considered an isolated fault. Next, we consider a
KNOWN FAULT, which encompasses faults which have
happened in the past in some capacity. For example,
a jammed reaction wheel is a well known culprit re-
sponsible for navigation related faults. These sorts
of faults are ones which, in theory, could be preemp-
tively engineered into onboard fault logic. In our il-
lustrative example, the fault occurring at F6,9 would
be considered an a known fault. Lastly, and perhaps
most importantly, we consider ANOMALOUS FAULTS,
which encompass faults that could not be preemp-
tively engineered into onboard fault handling con-
structs. The novelty of this scenario is explained by
the salience presented in a particular fault-telemetry-
environment combination. Note that some faults
can have multiple characterization assignments based
on our described classification system. In our illus-
trative example, the fault occurring at F13,15 would
be considered an an anomalous fault.

Diagnosis Algorithm
We describe our diagnosis system, shown in Algo-
rithm 1 and Figure 2. The inputs to our algorithm
are the set of faulting mnemonics, a window of frames
used for diagnosis, and a static list of ordered teleme-
try mnemonics to establish consistency in algorith-

mic calculations (lines 1 - 4). Pre-processed ele-
ments are shown on lines 5 - 6, where n represents
the number of total mnemonics per frame, and n′

gives an upper bound ranking to mnemonics consid-
ered from our main artificial intelligence constructs,
shown on lines 8 - 10. The Kalman construct (set
of mnemonic names and corresponding normalized
z-score values; line 8) represents how a particular
telemetry mnemonic is performing relative to its own
individual past history of performance, independent
of other data points in the frame. The AE con-
struct (set of mnemonic names and corresponding
normalized reconstruction error values; line 9) rep-
resents how a mnemonic is performing over a small
window of time, relative to the other mnemonics in
the frames. Lastly, the Causality construct (set of
mnemonic names and corresponding n × n matrix
of row-normalized association values; line 10) repre-
sents the relatedness of mnemonics to one another,
over a small window of time. The Kalman construct
shows mnemonic-specific data over the life of the
mission, whereas AE and causality show context-
specific holistic frame data over a smaller window
of time.

Algorithm 1 Ensemble-based Diagnosis Algorithm

1: S : set of faulting mnemonics
2: Fa,b : frames used for diagnosis
3: ⊙ : ordered telemetry mnemonics
4: ⋆ : bounds for ordered telemetry mnemonics
5: n← len(fi ∈ Fa,b)
6: n′ ← roundInt(

√
n)

7: MS ← S
8: MK = (⊙K, ⋆K)← Kalman(Fa,b)
9: MV = (⊙V , ⋆V)← AE(Fa,b)

10: C = (⊙C , ⋆C)← Causality(Fa,b)
11: if |MS | = 1 ∧MS = top1[MV ] then ▷ Rule 1
12: m̂←MS
13: return ISOLATED FAULT, m̂
14: else
15: m̂← top1[MK]
16: C ′ ← []
17: for s ∈MS do
18: C ′ ← C ′ ∪ top1[C(s)]
19: end for
20: if m̂ ∈ [MV ] ∨ m̂ ∈ C ′ then ▷ Rule 2
21: return Walkdown(MS , C, n,⊙K,⊙)
22: else
23: return ANOMALOUS FAULT, m̂ ▷ Rule 3
24: end if
25: end if

Rule 1 (lines 11-13) states that, if there is only
one isolated faulting mnemonic m̂, and that faulting
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mnemonic is the same as the top-1 AE mnemonic,
we return an ISOLATED FAULT, with m̂ as the re-
sponsible value. We offer the following interpreta-
tion: if the only symptom of the fault is the same
as the mnemonic which is contributing the most to
the overall error, than it is likely the root cause as
well. This fault is likely in the form of a single event
upset, a bit-flip, or a faulty sensor reading.

Rule 2 (lines 15-21) states that, if the top-
1 faulting Kalman mnemonic m̂ is a top-n′ fault in
the AE, or it is in the list composed of the mnemon-
ics which are most related to each of the individual
faulting mnemonics in MS (line 20), then perform
the walkdown procedure to find the root cause. We
offer the following interpretations: if the mnemonic
which is breaking the most individually is either (1)
contributing largely to the overall error or (2) is di-
rectly related one of the symptoms, than it is likely
also a symptom. Therefore, the algorithm defaults
to the walkdown method to find the root-cause.

The Walkdown Method (Algorithm 2) oper-
ates over the faulting mnemonics (symptoms), and
the causality matrix. An initial candidate root cause
m̂ is generated by adding together the normalized
causality vectors of the top faulting mnemonics (lines
6-9), and returning the mnemonic with the high-
est corresponding value (line 10). In this way, we
capture the mnemonic which is most highly related
to all symptoms. If this candidate value is break-
ing its own Kalman value (line 13), then return a
KNOWN FAULT, with m̂ as the responsible mnemonic.
However, if the candidate is not breaking its Kalman,
consider the mnemonic with its top-1 most related
to m̂ as the new candidate root cause, and repeat
the Kalman check criterion (lines 12-18). If no root
cause is found in this traversal, an ISOLATED FAULT

is returned (line 19). Faulting mnemonics (line 11)
and visited mnemonics (line 16) are not considered
in the search. We offer the following interpretation:
if the value which is most highly related to all faulting
mnemonics has substantial individual error, than its
likely a fault which is not anomalous. If this candi-
date value does not have substantial individual error,
find the next most related mnemonic to this candi-
date, and repeat the Kalman check.

Rule 3 (line 23) states that, if the top-1 fault-
ing Kalman mnemonic m̂ is not a top-n′ fault in the
AE, and is not in a list composed of the mnemon-
ics which are most related to each of the individual
faulting mnemonics inMS , an ANOMALOUS FAULT is
returned, with m̂ as the responsible value. More
simply, this case considers the high individual error
candidates described in Rule 2 (line 15) to be root-
cause candidates, instead of symptoms. We offer the

Algorithm 2 Walkdown Diagnosis Algorithm

1: MS : faulting mnemonics
2: C = (⊙C , ⋆C) : causality matrix
3: n : number of mnemonics per frame
4: ⊙K : telemetry mnemonics which break their

Kalman value
5: ⊙ : static list of telemetry mnemonic names
6: D ← zeros[n]
7: for s ∈MS do
8: D = D + ⋆C [s]
9: end for

10: m̂← top1[(⊙, D)]
11: E ←MS
12: while |E| < n do
13: if m̂ ∈ ⊙K then
14: return KNOWN FAULT, m̂
15: end if
16: E = E ∪ {m̂}
17: m̂← top1[C(m̂)]
18: end while
19: return ISOLATED FAULT, ∅

following interpretation: If the mnemonic with the
highest individual error is not contributing to over-
all error and is not related to any symptoms, it is
not considered a candidate symptom. Instead, its
high individual error indicates it is a root cause.

EXPERIMENTAL RESULTS

We tested our system in two main settings. The first
setting was a software-only proof-of-concept (POC)
setting, where we tested the accuracy and success
of our diagnostic algorithm on three data sets with
known (or in a special case, inferred) ground truth
values. The second setting was a hardware-in-the-
loop setting, in order to evaluate on-board tractabil-
ity testing.

Diagnostic Accuracy Testing
The first portion of our testing evaluates the accu-
racy of our diagnostic system against baseline meth-
ods.

Methods: We tested our system on three data sets
of varying complexity levels, across three separate
experiments. Each data set included a set of time-
synced frames of spacecraft telemetry, along with
their corresponding fault criterion, in the form of
thresholds, or allowable state-based values. Teleme-
try testing was simplified by converting all tests into
threshold-based testing in the following manner: Con-
tinuous telemetry values were converted to decimal
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Figure 2: System diagram of fault diagnosis process
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Exp # # Missions [min, max], sd # mn

1 11 [1440,1440],0 8
2 10 [651,2028],554.9 17
3 1 [6448,6448],0 33

Table 2: Mission information for each
experiment is shown, including number of

total flights (# Missions), the min, max and
standard deviation of mission length in time
steps ([min, max],sd) and the total number
of telemetry mnemonics per frame in the

data sets (# mn).

values and used in threshold-based testing, and dis-
crete state based mnemonics were converted to rep-
resentative integer values, which were then converted
into decimal equivalent values.

Prior to diagnosis testing, we trained the auto
encoder using a data split on our available sam-
ples. Splits were made to provide 50% fault data,
and 50% non-faulting data. After training, test-
ing data sets were inputted into our diagnostic al-
gorithm through a continuous data stream. In this
case, our algorithm used the threshold-based test-
ing to detect/trigger faults, at which point diagnosis
would take place to render a root cause. In addition
to overall accuracy, we test our algorithm against
established baselines. We performed comprehensive
hyperparameter tuning as well as ablation testing of
each component trained individually.

Data Sets: We ran our system on three data sets, of
varying (increasing) complexity levels, shown in Ta-
ble 2. Data set 1 (“Toy Data Set”) consisted of 11
flights of basic spacecraft housekeeping and physics
data. Missions reflected a broad range of faults,
tightly generated with known ground truth values.
Examples of faults include the following – “voltage
sensor broken” (ISOLATED FAULT), “thruster broke
max capacity” (ANOMALOUS FAULT), and “unsafe alti-
tude” (KNOWN FAULT). Data set 2 (“Simulation Gen-
erated Data Set”) consisted of 10 flights of sounding
rocket data, generated from the Kerbal Space Pro-
gram flight simulation, with self-generated known
ground truths. Examples of faults include “pressure
SEU” (ISOLATED FAULT), “communication drop”
(ANOMALOUS FAULT), and “thrust caused crash to
earth” (KNOWN FAULT). Data set 3 (“Sounding Rocket
Data Set”) consisted of 1 flight of a real sounding
rocket with a known ground truth value. The fault
was a known fault, related to a threshold break in the
skin temperature of the rocket due to an increased
speed.

Results: Overall, Experiment 1 had a 0.77 accuracy
rate for diagnosing the correct mnemonic responsi-
ble for faults. Of the correctly diagnosed faults, our
system was able to successfully classify the type of
fault in 70% cases. Classification was particularly
successful for SEU’s and anomalies. Surprisingly,
our system mis-classified 2 of 9 faults as anomalous
faults instead of nominal faults. This is not of acute
concern, as the priority in this work is a correct
mnemonic diagnosis. There were two missions where
classification was not fully successful. The first is a
mission where a current jump is caused by a science
instrument onboard. Our system ultimately per-
formed a walkdown method, but was unable to find
a root cause, thus rendering NO DIAGNOSIS. In this
case, the science instrument readings were boolean
indicators representing whether the instrument was
on or not, and therefore we postulate that the sim-
plicity of the readings was never able to break its
own Kalman filter, which would have stopped the
walkdown traversal. The other mission that was in-
accurately diagnosed was one in which the space-
craft caught on fire (Figure 3(b)). We believe that a
diagnosis was challenging, because the cause was ex-
ternal to the satellite telemetry set. An interesting
observation from the data shown in Figure 3(a,c) is
that given two missions that appear to be similar to
the human eye, classification was accurate at detect-
ing the two very separate root causes for faults. The
first (a) was classified as a NOMINAL FAULT, and the
second (c) was classified as an ISOLATED FAULT.

Overall, Experiment 2 had a 0.7 accuracy rate
for diagnosing the correct mnemonic responsible for
faults. Of the correctly diagnosed faults, our system
was able to successfully classify the type of fault in
71% cases. Classification was successful for anoma-
lies, and most isolated fault cases (see Figure 3(d-e)
for examples of simple SEU faults). Among success-
fully diagnosed cases, there were no nominal faults.
There were three missions where classification was
not fully successful. The first is a mission where
change in velocity caused a communication drop (Fig-
ure 3(f)). The algorithm instead diagnosed the change
in the vessel’s velocity as the ground truth, which we
consider a nearly accurate classification. The other
missions were a mission where changes in pressure
caused a navigation SEU, and a mission where a de-
coupling on board caused a communication drop.

Experiment 3 was only composed of one mission.
The ground truth diagnosis for the nominal fault in
skin temperature caused by increased speed was the
Z acceleration value. Our algorithm consistently di-
agnosed the Z magnetometer reading. We believe
that the algorithm was unable to catch Z acceler-
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Figure 3: Shows three missions for Experiment 1 (top row) and three missions for
Experiment 2 (bottom row). Missions depicted in (a,c,d,e) were diagnosed currently by the
fault diagnosis method developed in this chapter. (a) Shows a mission where thrusters broke

their expected capacity limits for flight, inducing symptoms in the voltage and current
(symptom: VOLTAGE,CURRENT, cause:THRUSTER). (b) Shows a mission where a

component of the spacecraft was pulling too much current and caught on fire, setting the
entire craft into flames (symptom: TEMP, cause: CURRENT). (c) Shows a mission where

the voltage readings were incorrect in an isolated fault (cause: VOLTAGE, symptom:
VOLTAGE). (d) Shows a mission where the G-Force encountered a minor bit flip in the form
of an SEU (symptom: G-Force, cause: G-Force). (e) Shows an event similar to (d), where
the velocity reading temporarily flickers to the wrong value (symptom: Velocity, cause:

Velocity). (f) Shows a mission where the velocity causes a temporary loss in communication
with ground control (symptom: Velocity, cause: Velocity).
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Ex # Acc PPO1 PPO2 AE1 AE2 WD

1 0.77 0.03 0.04 0.35 0.60 0.64
2 0.70 0 0 0.48 0.53 0.3

Table 3: Average accuracy of diagnosis
compared to known ground truths. The

compared accuracy of diagnosis, as seen in
the above table, differentiates between

methods such as the top one-two diagnoses
of PPO, the top one-two diagnoses of AE,
and the diagnosis of the walkdown method;
these models are being compared to the

accuracy of the ensemble approach.

Construct 10 mpf 50 mpf 100 mpf 200 mpf

Kalman 0.237 0.351 0.581 0.831
AE 0.211 0.589 1.05 1.98

Causality 0.845 4.5 5.05 5.42

Table 4: Average milliseconds (ms) per
frame across 100 runs. We performed an

ablation study on the AI components in the
framework, where each isolation component
is tested for an average number of ms per
frame of processing time across 100 runs.

This study is run against frame sizes
composed of 10, 50, 100 and 200 mnemonics

per frame (mpf).

ation as the root cause due to its sporadic behav-
ior during the fault, whereas the magnetometer was
consistently symptomatic to the change as well.

Baseline Tests: In addition to accuracy testing, we
compared our experimental results to baseline meth-
ods, shown in Table 3. We tested each batch exper-
iment against a reinforcement learning (RL) based
Proximal Policy Optimization (PPO) algorithm, and
against a standalone autoencoder (AE) approach. In
both cases, we put a large amount of effort into tun-
ing and optimizing the methods for success. Even so,
our algorithm outperformed the top ranking base-
lines by 28% and 32% for experiments 1 and 2, re-
spectively. No baseline testing was performed on
Experiment 3.

Tractability Testing
In addition to our proof-of-concept (POC) software
testing, we ran our algorithm on a Raspberry Pi 3
B+ with a 1.4GHz quad-core ARM Cortex-A53 and
1 GB of RAM. This hardware is representative of a
realistic flight hardware test bed and allows us to
perform tractability testing for on-board diagnos-

tic capability. As a part of an ablation approach,
we isolated performance tests on individual compo-
nents of the framework to find average run time per
frame across 100 runs, shown in Table 4. We used
Python’s time module to generate timestamps. Each
component was tested against 10, 50, 100, and 200
mnemonics per frame (mpf). We consider growth
rate of performance against growth from 10 mpf
to 200 mpf (20 times the number of mnemonic per
frame). The top performing component overall was
the Kalman Filter, which performed only 0.026ms
worse than the AE initially at 10 mpf, but had the
smallest growth rate as the number of mnemonics
increased. Causality performed most poorly over-
all, with an initial processing time of 0.845ms for 10
mpf (4 and 3.57 times the performance of the AE
and Kalman, respectively), and a 6.414 growth rate,
where it was outperformed at 200mpf by Kalman
and AE by 6.52 and 2.74, respectively. Surprisingly,
this growth rate was lower than that of AE, which
had a growth rate of 9.38. It should be noted that
a benefit of causality and Kalman constructs is that
they do not require training.

In future work, we plan on optimizing our al-
gorithm in preparation for a live flight by reducing
the matrix size rendered by the causality construct.
Currently, for frame size n, our algorithm renders
a n × n matrix of associations at diagnosis time.
This can be optimized by requesting causality vec-
tors as they are needed in the walk down traver-
sal, which would provide a guaranteed optimization.
The walkdown algorithm excludes queries on symp-
tomatic mnemonics, which reduces the search to (n−
k) × (n − k) for k symptom mnemonics. In order
to trigger a diagnosis, at least one mnemonic must
be faulting, and therefore k ≥ 1. Note that query
time is constant and would only contribute a linear
growth factor.

CONCLUSION

We presented a novel and innovative method for
spacecraft fault diagnosis using telemetry data. We
tested our method with three data sets of varying
complexity levels, and of various domain represen-
tation levels. We compared our results with alterna-
tive artificial intelligence methods in baseline test-
ing, and performed an ablation-based experiment in
a realistic hardware flight test bed. This fault diag-
nosis work contributes research toward CPS diagno-
sis. In the following chapter, we shift focus toward
the reaction portion of the CPS continuum, present-
ing a generalized framework for action discovery in
robots.
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